
Pattern formation of underwater sand ripples with a skewed drive

F. Bundgaard,* C. Ellegaard,† and K. Scheibye-Knudsen
Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark

T. Bohr
Institute of Physics, Technical University of Denmark, Building 309, DK-2800 Kgs. Lyngby, Denmark

T. Sams
Danish Defence Research Establishment, Ryvangs Allé 1, P.O. Box 2715, DK-2100 Copenhagen, Denmark

(Received 24 February 2004; published 15 December 2004)

In this paper we present an experimental study of the dynamics of underwater sand ripples when a regular
pattern of ripples is subjected to a skewed oscillatory flow, i.e., one not perpendicular to the direction of the
ripple crests. Striking patterns with new, superposed ripples on top of the original ones occur very quickly with
a characteristic angle, which is, in general, not perpendicular to the flow. A slower, more complex transition
then follows, leading to the final state where the ripples are again perpendicular to the flow. We investigate the
variation of the superposed pattern as a function of the direction, amplitude, and frequency of the drive, and as
a function of the viscosity(by changing the temperature). We quantify the dynamics of the entire transition
process and finally study the grain motion around idealized(solid) skewed ripples. This leads to a characteristic
mean path of a single particle. The path has a shape close to a parallelogram, with no apparent connection to
the pattern of real, superposed ripples. On the other hand, a thin layer of sand sprinkled on the solid ripples
leads to qualitatively similar patterns.
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I. INTRODUCTION

When a flat bed of sand is subjected to an oscillatory
water flow, regular patterns of ripples will appear almost
inevitably. This phenomenon, well known from shallow-
water zones like beaches, has been investigated for almost a
century. Classical studies[1] show that so-calledrolling
grain rippleswill form initially, when the sand bed becomes
linearly unstable. However, these small, moving filaments of
grains are always transient and will develop into the stable,
triangularvortex ripplesperpendicular to the water flow. Vor-
tex ripples are named so because of the vortex with reversed
flow created behind the ripple crest in each half period of the
oscillation. The slope of the sides is roughly at the angle of
repose of the sand, while the ripple distancel from one crest
to the next is set by the amplitudea of the water motion.l is
roughly independent of the frequencyf [2–4], but scales lin-
early with the driving amplitude so thatl<1.3a.

Recent studies of vortex ripples have investigated and
modeled the flow, shear stress, and sediment transport on the
ripples in one dimension[5–8]. The more general pattern
forming properties[9] of two-dimensional sand beds have
been subject to studies[4,10,11], which have focused on the
dynamics of the pattern when the driving parameters are
changed. In these studies a fully developed bed of vortex

sand ripples was subjected to a change in the driving ampli-
tude and frequency, and secondary instabilities, some of
which are intrinsically two dimensional, were found. Thus, if
a bed of perfectly periodic ripples is driven with a larger
amplitude than the one used for creating the system, it will
be forced into a state with a larger ripple distance. This can
happen with or without encountering secondary instabilities,
as stated below.

Hansenet al. [4] describe how astability balloonexists
around a given point in thesa, fd plane: This means that it is
possible to change the frequency and amplitude for stable
perpendicular ripples within this region, without encounter-
ing secondary instabilities in the pattern formation. Thus,
raising the amplitude to a point within the stability balloon
will simply lead to a slow increase inl of the original
ripples. However, when a regular pattern is subjected to a
larger amplitude which lays outside the stability balloon a
secondary instability will occur. One might expect, in anal-
ogy with the Rayleigh-Bénard system, that this transition
would be of the Eckhaus type[9], where ripples are com-
pressed and dilated in the direction of the drive, making the
instability one dimensional. However, the intermediate states
develop transverse oscillations of ripple crests, namedbulg-
ing [4,10,11]. This bulging transition resembles theskew-
varicoseinstability in the Rayleigh-Bénard system, which is
believed to occur because of mean flow effects[9,12].

The occurrence of bulging transitions where significant
parts of the ripples cease to be perpendicular to the drive,
implies that one needs a better understanding of the proper-
ties of ripples that are skewed with respect to the drive.
These properties are largely unexplored, and, as seen below,
present surprising phenomena. The present work is a detailed
study of the dynamics of vortex ripples when they are sub-
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jected to a flow at an angle different from the one that has
originally formed them. We observe a complex transition
from the original skewed ripples to the final perpendicular
ones. The character of the intermediate states is different for
small and large skewness of the ripples. If the initial ripples
are close to being perpendicular to the drive, the bulging
transition occurs, and the ripple crests undergo sinusoidal
perturbations, but for larger skewness the deformations ap-
pear more zigzag like with straight segments in two distinct
directions. Such states resemble the “brick patterns” first ob-
served by Bagnold[1] and the “pearling transition” de-
scribed in[4]. Thus, by varying the angle between the initial,
unperturbed ripples and the drive, we can interpolate be-
tween transitions of “bulging” type and ones closer to “pearl-
ing.”

For large skewness, a pattern of well-defined ripples su-
perposed on the initial ones appears at a new angle which is
generally not perpendicular to the drive. The angle is mea-
sured experimentally using Fourier spectra in which the
emerging peaks are sharp, reflecting the regularity of the
ripple pattern.

Our initial expectation was that this angle would depend
strongly on the angle between the unperturbed state and the
new driving direction, as well as on the driving amplitude.
This was thought because these quantities characterize the
geometry of the pattern and therefore the possible geometri-
cal resonances, like Bragg scattering over sea bottom ripples
[13]. However, the dependence on the initial angle was small
in this regime, whereas an unexpected dependence on the
frequency of the oscillatory drive was found. This suggests
that the phenomenon observed is viscous rather than geomet-
ric. Studying the water motion over a fixed bed of ripples,
the flow becomes independent of gravity and if the angle
depends on the frequency, it can do so only through the
combination of the frequency divided by the viscosityn, like
the transverse instabilities in the flow around an oscillating
cylinder [14]. Multiplying by either the amplitude of the
drive or the initial ripple distance we get the Stokes number
St=a2f /n. The angle of the new ripples is then a function of
the Stokes number. This allows an investigation into the pos-
sible equivalence of changing the frequency and the viscos-
ity. Experimentally, the change in viscosity was realized by
changing the temperature of the water.

To understand the hydrodynamical properties of the flow,
we studied trajectories of single particles as they are dragged
along by the oscillating flow. Such tracks turn out to be sur-
prisingly universal, and do not allow a determination of the
angles of the pattern. On the other hand, we show that the
main features of the superposed ripple patterns can be repro-
duced in the patterns formed by a thin layer of sand sprinkled
on a plastic model of ripples(analogously to the experiments
by Matsunaga and Honji[14] for the nonskew case).

Section II describes the experimental setup and the typical
experimental procedure. Next, in Sec. III we show how the
angle of the superposed ripples depends on the different driv-
ing parameters. This is followed by Sec. IV, where the tem-
poral development of the transition for different driving pa-
rameters is quantified. Finally, in Sec. V A we focus on the
tracking of single particles in their flow across the ripples
and, in Sec. V B, on the patterns of thin layers of sand

sprinkled on plastic ripples. The work presented here can be
found in further detail in[15].

II. EXPERIMENTAL SETUP

The experimental setup is similar to those used in previ-
ous experiments[4,10,11] in that a tray with sand is oscil-
lated in stationary water. The main additional feature is that
the round tray may be rotated to any angle, so that a ripple
pattern created in the sand at one angle may be subjected to
a new flow at a different angle.

The setup is sketched in Fig. 1. A circular tank 150 cm in
diameter and 42 cm high is filled with water and covered by
a Plexiglass lid. Inside, an aluminum tray 120 cm in diam-
eter, carrying a 2 cm thick layer of sand, is oscillated hori-
zontally. A rounded edge on the tray minimizes the vortices
made when oscillating the tray and a gently inclining
“beach” makes a smooth transition between the plastic edge
and the layer of sand. The sand area is around 100 cm in
diameter. Two steel rods connected by a cross carry the tray
inside the tank. The tray is attached only in the center, while
four wheels underneath the plate support it. Using a step
motor outside the tank, it is possible to turn the tray accu-
rately without opening the tank, so that a bed of sand ripples
can be subjected to a water flow at any given angle.

Outside the tank, four ball bearings carry the steel rods,
protruding through holes in the wall of the tank. To keep the
water inside, flexible bellows molded in rubber are attached
to the tank in one end and to the rod in the other.

The sand is observed from above using an 8-bit black-
and-white Basler A101f FireWire camera with a resolution of
130031300 pixels. With a viewing field of 120 cm across
(the diameter of the tray) a resolution of 1.2 mm/pixel is
obtained. To make the three-dimensional ripples visible, light
is directed onto the ripples from the side, at a flat angle
around 30°, so that one side is illuminated, while the other

FIG. 1. The experimental setup. A circular tray with a 2 cm
thick layer of sand is oscillated horizontally in a closed, water-filled
tank. The tray can be turned using a step motor, so that a bed of
sand ripples can be subjected to water motion at any given angle.
An overhead camera records the images.
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remains in the shade. This produces a striped image, as
shown in Fig. 2.

The camera is directly connected to a photodiode trigger-
ing the camera when the tray is in a certain position. Typi-
cally a picture is captured every fifth oscillation.

We use spherical glass balls 250–350mm in diameter and
with a densityr of 2.65 g/cm3 instead of natural sand, yield-
ing a slightly lower angle of repose of the ripples. The cam-
era resolution of 1.2 mm/pixel gives roughly 4 grain diam-
eters per pixel.

A. The typical experiment and data analysis

All the experiments investigating the superposed sand
ripples have been performed in the same, following manner.
First, the sand bed is prepared by completely leveling the
surface. A grid of parallel, 15 mm high V-shaped profiles
30 mm apart is pressed into the sand and carefully pulled up
again. This leaves an array of parallel grooves, perpendicular
to the direction of motion. The distance between the grooves
has been chosen to provide a sufficiently large number of
ripples on the tray. Because of the many parameters that are
varied in the system, we chose to keep the initial ripple dis-
tance constant throughout all experiments.

The Plexiglass lid is lowered onto the tank and the tray is
oscillated a dozen times, transforming the middle part of the
flat bed with grooves into a defect-free pattern of real vortex
ripples. The driving amplitude used is 22 mm, which corre-
sponds to the ripple distancel of 30 mm (recalling thatl
<1.3a). The frequency is set to 0.9 Hz. Only the middle part
of the tray is analyzed, since the border effects near the edge
influence the pattern formation, leading to various defects.

The tray is then turned to the desired angle and oscillation
is started with the new amplitude and frequency. A typical
development of the ripples can be seen in Fig. 2.

When a series of images has been recorded, a fast Fourier
transform (FFT) is performed on the middle
5123512 pixels of each original image. It has been ex-
perimentally verified that the influence of the border ef-
fects on this area is negligible. This was done by observ-
ing the system for an extended period of time. It was seen

that the middle part of the pattern eventually became
stable, even though new defects were constantly created
further out because of the edge geometry.

The original ripple distancel and anglea with respect to
the direction of the water motion are both set before the
experiment is started, and can be extracted from the FFT
along with the new ripple angleb of the superposed ripples
and the new ripple distancen, all shown in Fig. 3. Three
examples of different anglesb are given in Fig. 4.

By thresholding the FFT corresponding to the images
when the superposed ripples have just emerged(usually after
50 oscillations, depending on the frequency), only two dis-
tinct pairs of spots corresponding to the two directions re-
main. The center of mass of each of the four spots is found
and the distances 2dl and 2dn between the two pairs and the
angles are calculated. The two ripple distances are found
using thatl=N/ udu, whereN is the side length of the qua-
dratic image measured in pixels. The angles can be measured
directly, as seen in Fig. 3. Changes of less than 0.1° can be
detected, while the overall error in the system remains below
1°.

Figure 2 illustrates the typical development of the ripples
in time. The first FFT simply shows the direction and dis-
tance of the original ripples, but already in the second image,

FIG. 2. The typical development of an experiment. The middle part of the tray with the defect-free pattern is shown. It is oscillated
horizontally with a driving amplitude of 29 mm, a frequency of 0.92 Hz, and the initial angle set to 43°. The initial ripple distance is 30 mm.
The time in minutes and seconds is shown in the corner of the Fourier transform below the pictures. In the first image the original ripples
are seen, while superposed ripples emerge on the second image. The two distinct directions collapse to new ripples almost perpendicular to
the driving motion, while the defects created slowly disappear by recombination or by climbing.

FIG. 3. (a) The initial anglea and the angleb of the superposed
ripples are defined on the image, taken after about 50 oscillations,
and are found again on(b), the corresponding FFT. The ripple dis-
tancesl andn of the original and superposed ripples are inversely
proportional to the distancesdl anddn, measured on the FFT.
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after 22 s(18 oscillations), the superposed ripples start to
appear at an angle of about 15° clockwise from vertical. This
is seen in the FFT as two pale spots to the left(above) and to
the right (below) the central spot. In the third picture, after
49 s, the old and new ripples are equally strong and the spots
in the FFT therefore appear equally bright. In the fourth pic-
ture, the two distinct ripple orientations have started to col-
lapse, as can be seen from the FFT, where the spots are much
less well defined. “Clouds” of smaller wavelengths are seen
on the outside of the spots. The collapse continues in the fifth
image, meaning that the defects now present in the pattern
move and cancel each other out, and the system moves to-
ward a new stable pattern perpendicular to the driving mo-
tion, with a ripple distance again corresponding to the new
driving amplitude. In the last image, almost a quarter of an
hour later, this new, larger ripple distance is present(seen by
the spots of the FFT being closer to each other). The small
pieces of ripple between the crests of the large ones can be
detected in the FFT as the two small clouds furthest apart.
These ripples will disappear along with most of the defects,
if the oscillation is continued for a sufficient period of time.
The time scale of the transition to a well-ordered, almost
defect-free pattern depends on the driving parameters and
ranges from hours to days. Further remarks on this will be
made in Sec. IV.

III. EXPERIMENTAL RESULTS

As stated in the Introduction, for geometrical reasons ini-
tially it was thought that the angle of the superposed ripples
would predominantly depend on the anglea of the original
ripples. Therefore, preliminary experiments were carried out
so that the driving amplitude would match the distance be-
tween the ripples along the driving direction, while the fre-
quency was set so thataf was kept constant. In this manner
the time scale of the transition is roughly constant, meaning
that the different characteristic phases of the pattern transi-
tions occur at roughly the same points in time for all experi-
ments.

However, contrary to the frequency independence of the
ripple distance observed with the perpendicular ripples
[1,2,10], the angle of the superposed ripples is affected when
changing the frequency alone as well as when changing the
amplitude. Furthermore, our present data suggest that the
initial anglea influences the angleb little, or not at all, when
a lies between 35° and 50°.

These initial results made us focus on two ways of vary-
ing the parameters: either keeping amplitude and frequency
constant while varying the initial anglea, or keeping the
initial angle constant while varyinga and f. These two ap-
proaches are described in the following two sections. Finally,
because of the strong influence of the frequency onb, a
series of experiments with varying temperature(and thereby
viscosity, as stated in the Introduction) were conducted, but
with fixed a, f, anda. These results are presented in the last
section.

Important to note is the intrinsic uncertainty which exists
in the formation of these patterns, so that the same initial
conditions yield different angles of the superposed ripples. A
standard deviation of about 3° is found.

A. Varying the initial angle a

The first experiments were carried out varying the initial
anglea only. The imprinted initial ripple distance of all our
experiments is 30 mm, corresponding to a driving amplitude
of 22 mm. By then changing to a driving amplitude of
30 mm and 0.80 Hz, the secondary instability bulging oc-
curs, as seen in the leftmost image of Fig. 5. The correspond-
ing FFT, recorded after 100 oscillations for each experiment,
shows a parenthesislike structure on both sides of the two
spots, corresponding to the larger and smaller ripple dis-
tances in the skewed directions of the bulges. The internal
parentheses are brighter than the external ones. This corre-
sponds to the fact that the areas of smaller ripple distance,
where the ripples are compressed, are flatter and more
blurred, thus giving less contrast.

When the initial ripples are no longer perpendicular to the
driving motion, but tilted more than 5°–10°, the bulges be-
come asymmetric. The half which is closest to being perpen-
dicular to the driving motion grows. The other half of the
zigzag, which has an angle larger than that of the original
ripples, decreases as if being stretched between the two more
perpendicular adjacent parts. The stretching makes this part
of the ripple thinner. In the FFT of the image ata=15° this
is clear: Two halves(top left and bottom right) of the internal
parentheses are now much stronger than the other two, which
have almost vanished, while two distinct dots further apart,
at the top right and the bottom left, have emerged and cor-
respond to the stretched part of the ripples with the smaller
width.

From a=10° until around 35° the general picture is
roughly the same: When raisinga, both the spots caused by
the thick bulges and those caused by the thin connecting
parts turn counterclockwise in the FFT, meaning that the
zigzag turns with the initial ripples. The thin parts are
stretched more and more, when the angle is increased, as
seen in Fig. 5 at 30°.

FIG. 4. Three different examples of the angleb of the super-
posed ripples, with the same initial anglea=45°. (a) Amplitude
a=26 mm and frequencyf =0.86 Hz giving a b of 23°. sbd
a=31 mm andf =0.73 Hzresulting in superposed ripples almost
completely perpendicular to the driving motion.scd a=36 mm
and f =0.62 Hz making new ripples at an angleb of −16°. The
definitions of the angles are seen in Fig. 3.
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With a from around 35° to 50° the transition is more
regular. The spots on the FFT corresponding to the thick part
of the zigzag become more well defined and less blurred.
This means that the pattern is more regular and that the
angles of the two parts of the zigzag are more sharply de-
fined. Therefore, it is meaningful to consider the pattern as
two superposed ripple patterns with anglesa andb.

No clear distinction can be made between the bulges and
the new superposed ripples by looking directly at the ripples
or by analyzing the FFT. The transition from one to the other
is not very sharp. However, when looking at the graph in Fig.
5 (right), it is clear that the angleb of the thick bulges
changes witha until around 35° and then stabilizes at an
angle of about 8° untila reaches about 50°. Ata=50°, b is
higher than whena lies between 35° and 45°, but almost
within the uncertainty. The transition dynamics slows down
whena is raised, because the ripple profile along the direc-
tion of the motion becomes less steep when the ripples are
turned, making the shear stress on the bed smaller. The vor-
tex created behind the ripple crest diminishes with increasing
angle and eventually vanishes. This agrees with the fact that
no superposed ripples are created at 55°. Instead, rolling
grain ripples emerge, as from a flat bed. The characteristic
clouds in the FFT(stemming from the short ripple distance
rolling grain ripples) can be seen at 55° in Fig. 5.

The dynamics observed ata=55° corresponds to qualita-
tive experiments made with water motion parallel to the
ripples. In these experiments, rolling grain ripples form in
the troughs between the ripple crests. If a grain located on
the side of a ripple is dislodged by the shear force, it will
move along with the water, parallel to the crest, but also falls
sideways toward the bottom of the trough because of the
inclination of the ripples. This transversal transport thus
leads to the flattening of the original ripples, while the rolling
grain ripples in the troughs eventually become real vortex
ripples, perpendicular to the water motion, and thereby also
to the old ripples.

To summarize this section, superposed ripples with a
well-defined angleb are found when the anglea is between
35° and 50°. Loweringa, a smooth transition between su-
perposed ripples and bulging is found.a above 50° gives no
superposed ripples, but leads to the creation of rolling grain
ripples in the troughs.

The temporal dynamics of the experiments of this section
will be analyzed in Sec. IV, and further indications of the
smooth transition around 35° will be presented.

B. Varying frequency and amplitude

In this part of the experiment,l was held constant at
30 mm, whilea was kept at 43° in most experiments, and
between 41° and 48° in all. Sincea influencesb much less
thana and f, the variation in the initial angle causes changes
in b, which are smaller than the intrinsic uncertainty(3°) of
the pattern formation.

A simple spline interpolation of all the data points has
been chosen to visualize all of the data points shown in Fig.
6. Four data series with different amplitudes are plotted in
detail in Fig. 7. A reasonably monotonic behavior is observed
for both parametersa and f within this region. The devia-

FIG. 5. The same initial pattern subjected to a driving ofa=30 mm andf =0.80 Hz, with varying initial anglea, measured after 100
oscillations. Fora near 0°, symmetric bulging of the ripples occurs(cf. [4]). At low angles from 10° to around 35°, the bulges are
asymmetric. A smooth transition from bulges to superposed ripples exists arounda=35°, while the superposed ripples vanish at 50°. The
angle of the bulges and superposed ripples as a function of the initial angle is plotted in the graph, and a stable area between around 35° and
50° is seen.

FIG. 6. (Color online) The angleb of the superposed ripples at
their appearance plotted as a function of frequency and amplitude.
The color scheme of the graph originates in a simple spline inter-
polation of the data points(black dots). It should be considered as
an overview of the results only. Both frequency and amplitude in-
fluence the angle ofb, in a reasonably simple way. The initial angle
a is 43° for most of the data points, and between 41° and 48° for
all. The standard deviation of around 3° should be kept in mind.
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tions from a monotonic behavior are most likely not signifi-
cant. The limited size of the current data set makes it impos-
sible to say whether a simple plane or a paraboloid is the best
fit.

The dynamics curves, described in Sec. IV, remain similar
when keepingaf constant. Contrary to this, as can be seen
from Fig. 6, the angle of the superposed ripples changes
most rapidly in the direction whereaf is constant.

C. Varying the temperature

As stated in Sec. I, the strong dependence of the super-
posed angles on the frequency suggests that the phenomenon
observed is viscous rather than geometric in origin.

Since the viscosity of water decreases almost by a factor
of 2 between 10 and 40 °C, we can change the viscosity
easily by changing the temperature. In Fig. 8 the angleb is
plotted as a function of the temperature. The stars and
crosses represent measurements started from initial angles
between 35° and 45°, with a fixed frequencysf =0.77 Hzd

and amplitudesa=31 mmd. The black squares show the cor-
responding variation obtained from Fig. 6, witha=31 mm
and varying frequency. The frequency is converted to the
temperature scale assuming thatb= fsStd and St=a2f /n, and
that the measurements of Fig. 6 were performed at 20±2 °C.
This means that a change in viscosity(due to the variation in
temperature) corresponds to a change inf, such thatf /n
remains constant. Although we do see a clear temperature
variation in the expected direction in Fig. 8, the variation
predicted by this assumption(the black squares) is too rapid,
indicating that the effect is not purely hydrodynamical, but
that the mobility of the grains(represented, e.g., by the
Shields parameter[16] containing the gravitational accelera-
tion) is probably also of importance.

IV. TEMPORAL EVOLUTION OF THE TRANSITION
PROCESS

Most of the experiments with different initial conditions
have given the same qualitative features of the transition
from the original skewed ripples, through the overlaid pat-
tern, to the new perpendicular ones. What changes is the time
scale, meaning the time it takes to reach a specific point in
the development of the superposed ripples, for instance, the
collapse of the two distinct ripple directions to new, perpen-
dicular ripples.

By the use ofdifference pictures, the overall motion of the
ripples can be analyzed, and the dependence of the transition
on the frequency and the amplitude can be estimated. The
absolute difference between the gray-scale value of a given
pixel and the same pixel in the following image is found for
the entire picture, so that the areas with large changes in
intensity have high values in the difference picture.

A simple measure of the dynamics can be made by count-
ing the number of pixels in the difference picture with a
value above some threshold value. This defines a dynamics
numberf. For an image size of 5123512 pixels, this means
that f will assume a value between 0 and 5122.

When looking at a sequence of images and comparing
with the dynamics curves of Fig. 9, some features are notice-
able. First a small rise inf is observed when the superposed
ripples start to emerge. The dynamics decreases again while
the superposed ripples grow stronger. They then rise rapidly
to the maximum value, which is reached when the super-
posed ripples start to recombine with neighbors and the de-
fects which were created start to move. In Fig. 2 this corre-
sponds roughly to the fourth image. After the maximum is
reached, the dynamics decreases gradually before reaching a
stable level. Because of the border effects in the system,
movements of the ripples continue at the edges, yielding a
higher dynamics numberf than an infinite system with com-
pletely stable ripples would do. When collapsing the curves,
by rescaling the two axes for each graph, so that the peak of
all curves fall in a single point, a reasonable agreement is
seen between the curves(Fig. 9). However, the relaxation of
the system does change with frequency.

A. Variation with initial angle a

The smooth transition from bulging to superposed ripples
around 35° proposed in Sec. III A is further supported by the

FIG. 7. Part of the data from Fig. 6 plotted in series with con-
stant amplitude. The size of the standard deviation, around 3°, is
shown to the right on the graph.

FIG. 8. Measurement of the angleb of the superposed ripples as
function of the water temperature. All measurements are made at
frequencyf =0.77 Hz and amplitudea=31 mm(close to the center
of Fig. 6). The different stars represent measurements started from
different initial anglesa: 35°, 40°, and 45°. The black squares show
the corresponding variation obtained by using data from Fig. 6 by
assuming thatb= fsStd as explained in the text.
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dynamics curves in Fig. 10, generated from the same experi-
ments. At low angles, the bulging of the ripples takes place
quite rapidly after the driving of the system has begun. This
implies thatf increases from the beginning and reaches the
maximum value, when the bulges recombine with neighbor
bulges, and defects are created.

The dynamics at higher initial anglesa is different, as
described in Sec. III A, with a smaller local dynamic peak in
the beginning, when the superposed ripples emerge. The dy-
namic maximum is reached later, when the superposed
ripples recombine with the neighbors. The defects then
slowly disappear by recombining, while the dynamics num-

ber approaches a steady level, in the manner described in
Sec. III A.

V. GRAIN MOTION ON SOLID RIPPLES

A. Single particle tracking on solid ripples

The angleb of the new ripples clearly depends on the
driving parametersf and a. These parameters influence the
way the water moves, and thus the way the sand is moved by
the water. Since the original ripples are not perpendicular to
the motion of the water, the flow cannot be considered two
dimensional, and there must be some net transversal flux
during a half period in the direction perpendicular to the
water motion(with a flux in the opposite direction during the
other half period). In order to visualize this transverse flow
and compare it to the geometry and lengths of the sand
ripples, a small particle with a density slightly higher than
that of water has been used. The movement of the particle
can be treated statistically, so that a mean path of the particle
can be found. The features of this mean path can then be
compared to the geometry of the real sand ripples and a
possible connection can be established.

Ideally, the single particle should be tracked on top of the
real sand ripples, but since we wish to investigate the angle
of the emerging, superposed ripples, data could only be col-
lected during the first few oscillations, before the deforma-
tion of the original ripples set in. This deformation alters the
flow of the water, and the path of a particle in the water will
therefore be changed too.

To overcome these problems, an array of artificial plastic
ripples with a ripple distance of 30 mm, corresponding to
that of the real sand ripples, was made. The simple geometric
profile of the plastic ripples was constructed from an analysis
of the shape of real ripples of similar size. The height of the
ripples are 40340 cm.

A plastic bead with densityr of 1.2 g/cm3 and a diameter
of 2 mm is used as the single tracer particle. The density was
thought to be high enough to keep the particle close to the
ripples at any time, and close enough to the density of water
to give a correct picture of the water motion.

The array of ripples is placed on the tray instead of the
sand. The motion of the single particle is recorded from
above using a 30 frames per second digital FireWire camera
moving with the tray, 10 cm above the lid.

The particle is placed in the middle of the field of view
and the motor is started. The particle moves back and forth
over the ripple crest, staying on one ripple for a period of
time before eventually moving to a neighbor ripple. The mo-
tion is not completely periodic, but clearly has some struc-
ture, as can be seen in the left graph of Fig. 11.

First, the position of the particle is determined in each
image using picture analysis software. Then the mean path of
the particle during one oscillation is found by making a float-
ing average, so that the mean position of the particle at a
given time is defined as the average of all the positions from
one half period before to one half period after the frame. An
example of the mean path is seen in Fig. 11(a) on top of the
recorded path of the particle. Next, the normalized and tem-
porally averaged path(b) can be calculated. As can be seen

FIG. 9. Dynamics curves from experiments with the same am-
plitude 31 mm and initial angle 43°, and with different frequencies.
The first minor peak after around 50 s corresponds to the emerging
of the superposed ripples, while the maximum dynamics is found
when the superposed ripples start to recombine with neighbors and
create defects. As can be seen, the dynamics depends strongly on
the frequency. The maxima of all curves fall on a hyperbola, indi-
cating that the dynamics numberf multiplied by the time is con-
stant for all experiments. Inset: The same dynamics data collapsed,
so that the maxima fall in the same point. It is seen that the curves
fall reasonably on top of each other, but that the decay of the dy-
namics varies with the frequency.

FIG. 10. Dynamics curves for experiments with different angle
a, and with fixeda and f. Two types of behavior are found, corre-
sponding to angles up until 20°(with a rapid initial increase in the
dynamics number), and from 35° where the peak is found later. In
between, at 25° and 30°, curves with characteristics from both types
are found, in agreement with the smooth transition between bulges
and superposed ripples which is proposed in Sec. III A.
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on the rightmost graph of Fig. 11(c) the paths for different
frequencies are almost identical. This is also the case for
experiments whereaf is kept constant. Thus, it is not pos-
sible to use these paths to predict the observed changes in the
patterns of the superposed sand ripples.

The mean paths displayed in Fig. 11(c) show that the
particle is dragged along the ripples almost parallel to the
crest until it suddenly jumps across the crest almost orthogo-
nally. The reversal of the stroke then causes a sharp turn of
the path before it is dragged back along the other side of the
crest, and it clearly illustrates the violent flows created by the
separation vortices around the crest[17]. The sudden change
from motion along the crest to orthogonal motion is known
from streak lines in steady flows across a solid cylinder at a
skew angle[18].

B. Sand on solid ripples

A few qualitative experiments have been performed using
a thin layer of sand sprinkled evenly over the plastic ripples.
To investigate the importance of the vortex behind the crest,
two new sets of artificial ripples with a sinusoidal profile and
heights of 6 and 2 mm have been manufactured in alumi-
num. The ripple distance is 30 mm as that of the plastic
ripples.

A regular pattern of superposed ripples can be obtained
when the right amount of sand is sprinkled on the plastic
ripples [Fig. 12(a)]. If the quantity of sand is too small, no
well-ordered structures emerge, while too much sand will
make the plastic ripples less important, because the troughs
will be filled with sand, effectively creating a different pro-
file. On the 6 mm sine ripples, superposed ripples emerge,
but soon develop into perpendicular ripples as seen in Fig.
12(b), presumably because of the weaker vortex behind the
crests. No sand ripple formation is observed on the 2 mm
ripples, due to the smaller height and the sinusoidal profile.

VI. SUMMARY AND CONCLUSION

We have investigated the superposed ripples which are
created when an array of regular ripples is subjected to a
flow nonperpendicular to the crests. It is found that both the
driving frequency and the amplitude, as well as the tempera-
ture (viscosity), influence the angleb of the superposed

ripples, while the initial anglea is of minor importance,
when it lies between 35° and 50°. Below 35° the superposed
ripples are less well-defined and a smooth transition to asym-
metric bulges is found at lower angles. Above 50°, no super-
posed ripples emerge, presumably because of the reduced
slope of the ripple sides in the direction of the flow. Instead
rolling grain ripples are created in the troughs.

The temporal evolution of the transition process was
quantified and it was shown that the development of the
pattern is qualitatively the same for different driving param-
eters. Furthermore, the smooth transition arounda=30°, be-
tween asymmetric bulges and regular superposed ripples, is
supported by the dynamics which shows a similar transition
at these angles.

The single particle tracking on solid ripples yielded accu-
rate mean paths with an interesting universal shape reflecting
the violent vortex dynamics around the crest, but showing no
direct connection with the superposed pattern. On the other
hand, a thin layer of sand on an artificial solid ripple-like
pattern reproduces the qualitative features of the ripple pat-
terns.

We believe that the origin of the superposed pattern is a
centrifugal instability, analogous to the one observed for
purely transverse(i.e., nonskewed) ripples[13,19,20], where
it creates a brick pattern, similar to the pearling transition

FIG. 11. (a) The particle path, and the particle position averaged over one oscillation.(b) The normalized path is found by subtracting the
averaged path from the original path, while the normalized averaged path(solid line) is the temporally averaged normalized path.(c)
Normalized averaged paths for different frequencies and the same amplitude 31 mm and initial angle 43°. No apparent differences between
the trajectories, which would explain the change in angleb of the real superposed ripples with the same parameters, are found.

FIG. 12. A thin layer of sand is evenly sprinkled on the solid
plastic ripples and oscillated.(a) A pattern of superposed ripples,
similar to the ones created in sand, occurs on the ripples with a
sharp crest.(b) The superposed ripples are not stable on sine-profile
ripples with no sharp crest, but develop into normal perpendicular
ripples (left side of image), because the vortex behind the crest is
much weaker.
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described in[4,10,11]. The basis for this transition is the
transverse instability of the flow around an oscillating cylin-
der [14]. This is supported by the fact that the angle mea-
surements show a clear temperature dependence, which sug-
gests that viscosity plays an important role. These
measurements, however, also suggest that the change in the
water flow caused by the grain motion is important for the

quantitative prediction of the superposed pattern.
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